refractivityModels.py 14.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#!/usr/bin/env Python3
import numpy as np

'''
@ Author:		Joost van den Born 
@ Contact:		born@astron.nl
@ Description:	A comparison of various atmospheric refraction models.
				Also these are used to calculate the difference in 
				atmospheric dispersion, given a set of conditions.
'''

def BarrellAndSears(l, T=288.15, p=101325, H=0):
	'''
		From Barrell & Sears, 1939
		Equation 7.7, page 52
		For atmospheric air (i.e. CO2 = 300 ppm)
		This equation is applicable for the  ranges T=10-30C and p=720-800 mmHg.

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
		Parameters
		---------- 
		l 	:	float
			Wavelength in microns
		T 	: 	float
			Temperature in Kelvin
		p 	: 	float
			Atmospheric pressure in Pascal
		H 	: 	float
			Relative humidity (0=<H=<1)

		Returns
		-------
		n 	: 	float
			Refractive index of atmospheric air at the given conditions
34
35
36
37
38
39
40
	'''
	T = K2C(T)
	P = hPA2mmHg(p/100)
	R = (0.378125 + 0.0021414 / l**2 + 0.00001793 / l**4) * (P*(1 + (1.049 - 0.0157*T) * P * 1e-6)/(1 + 0.003661*T)) - (0.0624 - 0.000680 / l**2) * H / (1 + 0.003661*T)
	n = R/1e6 + 1
	return n

41
def Ciddor(l, CO2=450):
42
43
	'''
		From Ciddor, 1996
44
		Equations 1 and 2
45
46
47
		At default conditions only. For more flexibility use
		Observatory.n_tph()

48
49
50
51
		Parameters
		---------- 
		l 	: 	float
			Wavelength in microns
52

53
54
55
56
		Returns
		-------
		n 	: 	float
			Refractive index of atmospheric air at the given conditions
57
58
59
	'''
	s = 1 / l
	R = 5792105 / (238.0185 - s**2) + 167917 / (57.362 - s**2)
60
61
	if CO2 != 450:
		R = R * (1 + 0.534e-6 * (CO2 - 450))  
62
63
64
65
66
67
68
69
70
71
	n = R/1e8 + 1
	return n

def Edlen1953(l):
	'''
		From Edlen, 1953
		Equation 2

		At standard conditions only

72
73
74
75
		Parameters
		---------- 
		l 	: 	float
			Wavelength in microns
76

77
78
79
80
		Returns
		-------
		n 	: 	float
			Refractive index of atmospheric air at the given conditions
81
82
83
84
85
86
87
88
89
90
91
92
93
	'''
	s = 1 / l
	R = 6432.8 + 2949810 / (146 - s**2) + 25540/(41-s**2)
	n = R/1e8 + 1
	return n

def Edlen1966(l):
	'''
		From Edlen, 1966
		Equation 1

		At standard conditions only

94
95
96
97
		Parameters
		---------- 
		l 	: 	float
			Wavelength in microns
98

99
100
101
102
		Returns
		-------
		n 	: 	float
			Refractive index of atmospheric air at the given conditions
103
104
105
106
107
108
109
110
111
112
113
114
115
	'''
	s = 1 / l
	R = 8342.13 + 2406030 / (130 - s**2) + 15997 / (38.9 - s**2)
	n = R/1e8 + 1
	return n

def Owens(l, T=288.15, p=101325, H=0):
	'''
		From Owens, 1967
		Equation 32
		Note that the pressure P and H are in torricelli (Torr),
		however, this is almost precisely 1 Torr = 1 mmHg

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
		Parameters
		----------
		l 	: 	float
			wavelength in micron
		T 	: 	float
			Temperature in Kelvin
		p 	: 	float
			Atmospheric pressure in Pa
		H 	: 	float
			Humdity (0<=H<=1)

		Returns
		-------
		n 	: 	float
			Refractive index of atmospheric air at the given conditions
131
132
133
134
135
136
137
138
139
140
141
142
143
	'''
	P = hPA2mmHg(p/100)
	T = K2C(T)
	s = 1 / l
	R = 8342.13 + 2406030 / (130 - s**2) + 15997 / (38.9 - s**2) * (P/720.775) * ((1 + P * (0.817 - 0.0133) * 1e-6)/(1 + 0.0036610*T)) - H * (5.722 - 0.0457*s**2)
	n = R/1e8 + 1
	return n

def BonschPotulski(l, T=288.15, p=101325, CO2=450):
	'''
		From Bonsch & Potulski, 1998
		Equations 6, 7, 8
		
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
		Parameters
		---------- 
		l 	: 	float
			Wavelength in microns
		T 	: 	float
			Temperature in Kelvin
		p 	: 	float
			Atmospheric pressure in Pa
		CO2 : 	float
			Particles per million of CO2

		Returns
		-------
		n 	: 	float
			Refractive index of atmospheric air at the given conditions
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
	'''
	x = CO2 / 1e6
	T = K2C(T)
	s = 1 / l
	# Rs = 8092.33 + 2333983 / (130 - s**2) + 15518 / (38.9 - s**2)
	Rs = 8091.37 + 2333983 / (130 - s**2) + 15518 / (38.9 - s**2)
	Rs = Rs / 1e8
	Rx = Rs * (1 + 0.5327 * (x - 0.0004))
	Rtp = Rx * p / 93214.60 * (1 + 1e-8 * (0.5953 - 0.009876 * T)*p) / (1 + 0.0036610 * T)
	n = Rtp + 1
	return n

def BirchDowns(l):
	'''
		From Birch & Downs, 1993 and 1994 (correction)
		Equations 1 and 2

		Only at standard conditions

178
179
180
181
		Parameters
		----------
		l 	: 	float
			wavelength in micron
182

183
184
185
186
		Returns
		-------
		n 	: 	float
			Refractive index of atmospheric air at the given conditions
187
188
189
190
191
192
193
194
195
196
197
198
199
	'''
	s = 1 / l
	R = 8342.54 + 2406147 / (130 - s**2) + 15998 / (38.9-s**2)
	n = R/1e8 + 1
	return n

def PeckReeder(l):
	'''
		From Peck & Reeder, 1972
		Equation 3

		Only at standard conditions

200
201
202
203
		Parameters
		----------
		l 	: 	float
			wavelength in micron
204

205
206
207
208
		Returns
		-------
		n 	: 	float
			Refractive index of atmospheric air at the given conditions
209
210
211
212
213
214
215
216
217
218
219
220
221
222
	'''
	s = 1 / l
	R = 8060.51 + 2480990 / (132.274 - s**2) + 17455.7 / (39.32957 - s**2)
	n = R/1e8 + 1
	return n


def slalib(l, T=288.15, p=101325, H=0, h=0, lat=-24, tlr=0.0065, eps=1e-10):
	'''
		SLALIB uses the same atmospheric model as ZEMAX
		based on the works of Hohenkerk & Sinclair and Seidelmann.
		They take the B&S refraction formula as a basis.
		Requires the pySLALIB package to work.

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
		Parameters
		---------- 
		l 	:	float
			Wavelength in microns
		T 	:	float
			Temperature in Kelvin
		p 	:	float
			Atmospheric pressure in Pa
		H 	:	float
			fractional humidity (0=<H=<1)
		h 	:	float
			Altitude of the observer (default=0 m)
		lat :	float
			Latitude of the observer (default=-24)
		tlr :	float
			temperature lapse rate (default=0.0065)
		eps :	float
			precision at which the calculation is aborted (default=1e-10)

		Returns
		-------
		n 	:	float
			Refractive index of atmospheric air at the given conditions
246
	'''
247
248
249
250
251
252
	try:
	    from pyslalib import slalib
	except ImportError as e:
	    print('pySLALIB package not found! Try installing it first.\nReturning n=1.')
	    return 1
	
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
	zObs = np.deg2rad(45.06563)
	p = p/100
	R = []
	if type(l) == float:
		l = [l]
	for wl in l:
		R.append(slalib.sla_refro(zObs, h, T, p, H, wl, lat, tlr, eps))
	if len(l) == 1:
		return R[0]+1
	else:
		return np.asarray(R)+1


def Mathar(l, T=288.15, p=101325, H=0):
	'''
		Refractivity model by Mathar (2007), valid above 1.4 microns
269
		Code taken from
270
		https://github.com/polyanskiy/refractiveindex.info-scripts/blob/master/scripts/Mathar%202007%20-%20Air%201.3-2.5um.py
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
		(better known from refractiveindex.info). The code was subsequently 
		minimally modified to make it suitable for this package.


		Parameters
		---------- 
		l 	: 	float
			Wavelength in microns
		T 	: 	float
			Temperature in Kelvin
		p 	: 	float
			Atmospheric pressure in Pa
		H 	: 	float
			fractional humidity (0=<H=<1)

		Returns
		-------
		n 	: 	float
			Refractive index of atmospheric air at the given conditions
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
	'''
	if l < 1.3 or l > 24:
		print('Using the Mathar model at this wavelength (l={:.3f}) is not recommended!'.format(l))

	if l <= 2.65:
		########################################################################
		# model parameters for wavelengths between 1.3 and 2.5 microns
		cref = [ 0.200192e-3,  0.113474e-9,  -0.424595e-14,  0.100957e-16, -0.293315e-20,  0.307228e-24] # cm^j
		cT   = [ 0.588625e-1, -0.385766e-7,   0.888019e-10, -0.567650e-13,  0.166615e-16, -0.174845e-20] # cm^j · K
		cTT  = [-3.01513,      0.406167e-3,  -0.514544e-6,   0.343161e-9,  -0.101189e-12,  0.106749e-16] # cm^j · K^2
		cH   = [-0.103945e-7,  0.136858e-11, -0.171039e-14,  0.112908e-17, -0.329925e-21,  0.344747e-25] # cm^j · %^-1
		cHH  = [ 0.573256e-12, 0.186367e-16, -0.228150e-19,  0.150947e-22, -0.441214e-26,  0.461209e-30] # cm^j · %^-2
		cp   = [ 0.267085e-8,  0.135941e-14,  0.135295e-18,  0.818218e-23, -0.222957e-26,  0.249964e-30] # cm^j · Pa^-1
		cpp  = [ 0.609186e-17, 0.519024e-23, -0.419477e-27,  0.434120e-30, -0.122445e-33,  0.134816e-37] # cm^j · Pa^-2
		cTH  = [ 0.497859e-4, -0.661752e-8,   0.832034e-11, -0.551793e-14,  0.161899e-17, -0.169901e-21] # cm^j · K · %^-1
		cTp  = [ 0.779176e-6,  0.396499e-12,  0.395114e-16,  0.233587e-20, -0.636441e-24,  0.716868e-28] # cm^j · K · Pa^-1
		cHp  = [-0.206567e-15, 0.106141e-20, -0.149982e-23,  0.984046e-27, -0.288266e-30,  0.299105e-34] # cm^j · %^-1 · Pa^-1

		sref = 1e4/2.25    # cm^−1, reference wavenumber
		Tref = 273.15+17.5 # K, reference temperature
		pref = 75000       # Pa, reference pressure
		Href = 10          #%, reference humdity in percent
		########################################################################
	
	if l > 2.65 and l <= 4.275:
		########################################################################
		# model parameters for wavelengths between 2.8 and 4.2 microns
		cref = [ 0.200049e-3,  0.145221e-9,   0.250951e-12, -0.745834e-15, -0.161432e-17,  0.352780e-20] # cm^j
		cT   = [ 0.588432e-1, -0.825182e-7,   0.137982e-9,   0.352420e-13, -0.730651e-15, -0.167911e-18] # cm^j · K
		cTT  = [-3.13579,      0.694124e-3,  -0.500604e-6,  -0.116668e-8,   0.209644e-11,  0.591037e-14] # cm^j · K^2
		cH   = [-0.108142e-7,  0.230102e-11, -0.154652e-14, -0.323014e-17,  0.630616e-20,  0.173880e-22] # cm^j · %^-1
		cHH  = [ 0.586812e-12, 0.312198e-16, -0.197792e-19, -0.461945e-22,  0.788398e-25,  0.245580e-27] # cm^j · %^-2
		cp   = [ 0.266900e-8,  0.168162e-14,  0.353075e-17, -0.963455e-20, -0.223079e-22,  0.453166e-25] # cm^j · Pa^-1
		cpp  = [ 0.608860e-17, 0.461560e-22,  0.184282e-24, -0.524471e-27, -0.121299e-29,  0.246512e-32] # cm^j · Pa^-2
		cTH  = [ 0.517962e-4, -0.112149e-7,   0.776507e-11,  0.172569e-13, -0.320582e-16, -0.899435e-19] # cm^j · K · %^-1
		cTp  = [ 0.778638e-6,  0.446396e-12,  0.784600e-15, -0.195151e-17, -0.542083e-20,  0.103530e-22] # cm^j · K · Pa^-1
		cHp  = [-0.217243e-15, 0.104747e-20, -0.523689e-23,  0.817386e-26,  0.309913e-28, -0.363491e-31] # cm^j · %^-1 · Pa^-1

		sref = 1e4/3.4     # cm^−1, reference wavenumber
		Tref = 273.15+17.5 # K, reference temperature
		pref = 75000       # Pa, reference pressure
		Href = 10          #%, reference humdity in percent
		########################################################################

	if l > 4.275 and l <= 6.35:
		########################################################################
		# model parameters for wavelengths between 4.35 and 5.2 microns
		cref = [ 0.200020e-3,  0.275346e-9,   0.325702e-12, -0.693603e-14,  0.285610e-17,  0.338758e-18] # cm^j
		cT   = [ 0.590035e-1, -0.375764e-6,   0.134585e-9,   0.124316e-11,  0.508510e-13, -0.189245e-15] # cm^j · K
		cTT  = [-4.09830,      0.250037e-2,   0.275187e-6,  -0.653398e-8,  -0.310589e-9,   0.127747e-11] # cm^j · K^2
		cH   = [-0.140463e-7,  0.839350e-11, -0.190929e-14, -0.121399e-16, -0.898863e-18,  0.364662e-20] # cm^j · %^-1
		cHH  = [ 0.543605e-12, 0.112802e-15, -0.229979e-19, -0.191450e-21, -0.120352e-22,  0.500955e-25] # cm^j · %^-2
		cp   = [ 0.266898e-8,  0.273629e-14,  0.463466e-17, -0.916894e-23,  0.136685e-21,  0.413687e-23] # cm^j · Pa^-1
		cpp  = [ 0.610706e-17, 0.116620e-21,  0.244736e-24, -0.497682e-26,  0.742024e-29,  0.224625e-30] # cm^j · Pa^-2
		cTH  = [ 0.674488e-4, -0.406775e-7,   0.289063e-11,  0.819898e-13,  0.468386e-14, -0.191182e-16] # cm^j · K · %^-1
		cTp  = [ 0.778627e-6,  0.593296e-12,  0.145042e-14,  0.489815e-17,  0.327941e-19,  0.128020e-21] # cm^j · K · Pa^-1
		cHp  = [-0.211676e-15, 0.487921e-20, -0.682545e-23,  0.942802e-25, -0.946422e-27, -0.153682e-29] # cm^j · %^-1 · Pa^-1
		σref = 1e4/4.8     # cm^−1, reference wavenumber
		Tref = 273.15+17.5 # K, reference temperature
		pref = 75000       # Pa, reference pressure
		Href = 10          #%, reference humdity in percent
		########################################################################

	if l > 6.35 and l <= 15.05:
		########################################################################
		# model parameters for wavelengths between 7.5 and 14.1 microns
		cref = [ 0.199885e-3,  0.344739e-9,  -0.273714e-12,  0.393383e-15, -0.569488e-17,  0.164556e-19] # cm^j
		cT   = [ 0.593900e-1, -0.172226e-5,   0.237654e-8,  -0.381812e-11,  0.305050e-14, -0.157464e-16] # cm^j · K
		cTT  = [-6.50355,      0.103830e-1,  -0.139464e-4,   0.220077e-7,  -0.272412e-10,  0.126364e-12] # cm^j · K^2
		cH   = [-0.221938e-7,  0.347377e-10, -0.465991e-13,  0.735848e-16, -0.897119e-19,  0.380817e-21] # cm^j · %^-1
		cHH  = [ 0.393524e-12, 0.464083e-15, -0.621764e-18,  0.981126e-21, -0.121384e-23,  0.515111e-26] # cm^j · %^-2
		cp   = [ 0.266809e-8,  0.695247e-15,  0.159070e-17, -0.303451e-20, -0.661489e-22,  0.178226e-24] # cm^j · Pa^-1
		cpp  = [ 0.610508e-17, 0.227694e-22,  0.786323e-25, -0.174448e-27, -0.359791e-29,  0.978307e-32] # cm^j · Pa^-2
		cTH  = [ 0.106776e-3, -0.168516e-6,   0.226201e-9,  -0.356457e-12,  0.437980e-15, -0.194545e-17] # cm^j · K · %^-1
		cTp  = [ 0.77368e-6,   0.216404e-12,  0.581805e-15, -0.189618e-17, -0.198869e-19,  0.589381e-22] # cm^j · K · Pa^-1
		cHp  = [-0.206365e-15, 0.300234e-19, -0.426519e-22,  0.684306e-25, -0.467320e-29,  0.126117e-30] # cm^j · %^-1 · Pa^-1
		σref = 1e4/10.1    # cm^−1, reference wavenumber
		Tref = 273.15+17.5 # K, reference temperature
		pref = 75000       # Pa, reference pressure
		Href = 10          #%, reference humdity in percent
		########################################################################


	if l > 15.05:
		########################################################################
		# model parameters for wavelengths between 16 and 24 microns
		cref = [ 0.199436e-3,  0.299123e-8,  -0.214862e-10,  0.143338e-12,  0.122398e-14, -0.114628e-16] # cm^j
		# something seems to be wrong with cT...
		cT   = [ 0.621723e-1, -0.177074e-4,   0.152213e-6,  -0.954584-9,   -0.996706e-11,  0.921476e-13] # cm^j · K
		cTT  = [-23.2409,      0.108557,     -0.102439e-2,   0.634072e-5,   0.762517e-7,  -0.675587e-9 ] # cm^j · K^2
		cH   = [-0.772707e-7,  0.347237e-9,  -0.272675e-11,  0.170858e-13,  0.156889e-15, -0.150004e-17] # cm^j · %^-1
		cHH  = [-0.326604e-12, 0.463606e-14, -0.364272e-16,  0.228756e-18,  0.209502e-20, -0.200547e-22] # cm^j · %^-2
		cp   = [ 0.266827e-8,  0.120788e-14,  0.522646e-17,  0.783027e-19,  0.753235e-21, -0.228819e-24] # cm^j · Pa^-1
		cpp  = [ 0.613675e-17, 0.585494e-22,  0.286055e-24,  0.425193e-26,  0.413455e-28, -0.812941e-32] # cm^j · Pa^-2
		cTH  = [ 0.375974e-3, -0.171849e-5,   0.146704e-7,  -0.917231e-10, -0.955922e-12,  0.880502e-14] # cm^j · K · %^-1
		cTp  = [ 0.778436e-6,  0.461840e-12,  0.306229e-14, -0.623183e-16, -0.161119e-18,  0.800756e-20] # cm^j · K · Pa^-1
		cHp  = [-0.272614e-15, 0.304662e-18, -0.239590e-20,  0.149285e-22,  0.136086e-24, -0.130999e-26] # cm^j · %^-1 · Pa^-1
		σref = 1e4/20      # cm^−1, reference wavenumber
		Tref = 273.15+17.5 # K, reference temperature
		pref = 75000       # Pa, reference pressure
		Href = 10          #%, reference humdity in percent
		########################################################################

	s = 1e4/l # cm^-1
	n = 1
	H = H*100

	for j in range(0, 6):
		n += ( cref[j] + cT[j]*(1/T-1/Tref) + cTT[j]*(1/T-1/Tref)**2
			+ cH[j]*(H-Href) + cHH[j]*(H-Href)**2
			+ cp[j]*(p-pref) + cpp[j]*(p-pref)**2
			+ cTH[j]*(1/T-1/Tref)*(H-Href)
			+ cTp[j]*(1/T-1/Tref)*(p-pref)
			+ cHp[j]*(H-Href)*(p-pref) ) * (s-sref)**j   
	return n 


def K2C(K):
	'''
		Kelvin to Celsius conversion
410
411
412
413
414
415
416
417
418
419

		Parameters
		----------
		K : float
			Temperature in Kelvin

		Returns
		-------
		C : float
			Temperature in Celsius
420
421
422
423
424
425
	'''
	return K - 273.15

def hPA2mmHg(hPa):
	'''
		hPa to mmHg conversion
426
427
428
429
430
431
432
433
434
435

		Parameters
		----------
		hPa 	:	float
			Atmospheric pressure in hPa (hecto Pascal)

		Returns
		-------
		mmHg 	: 	float
			Atmospheric pressure in mmHg
436
	'''
437
438
	return 0.7500616827 * hPa